Define the priors parameters to be used with ltm_mcmc()
.
create_prior_parameters(a_mu0 = 0, a_s0 = 0.1, n0 = 6, S0 = 0.06, v0 = 6, V0 = 0.06, m0 = 0, s0 = 1, a0 = 20, b0 = 1.5)
a_mu0 | mean of alpha normal distribution. |
---|---|
a_s0 | standard deviation of alpha's normal distribution. |
n0 | sig2 inverse gamma shape parameter. |
S0 | sig2 inverse gamma location parameter. |
v0 | sig_eta inverse gamma shape parameter. |
V0 | sig_eta inverse gamma location parameter. |
m0 | mu normal's mean parameter. |
s0 | mu normals standard deviation. |
a0 | a0 beta's shape parameter. |
b0 | a0 beta's location parameter. |
List containing the hyperparameters used to fit the model. The default parameters are the same of the simulation example of the paper.
Considering the following priors:
alpha ~ N(mu0, s0)
sig2 ~ IG(n0/2, S0/2)
sig_eta ~ IG(v0/2, V0/2)
mu ~ N(m0, s0^2)
(phi+1)/2 ~ Beta(a0, b0)
Nakajima, Jouchi, and Mike West. "Bayesian analysis of latent threshold dynamic models." Journal of Business & Economic Statistics 31.2 (2013): 151-164.