Simulate LTM model using many
ltm_sim(ns, nk, ni, vmu, mPhi, mSigs, dsig, vd, alpha)
ns | number of times |
---|---|
nk | number of covariates |
ni | number of series |
vmu | vector mu |
mPhi | phi diagonal matrix with the parameters |
mSigs | sigma eta vector |
dsig | general sigma |
vd | threshold parameter |
alpha | intercept |
List containing the generated y, x, beta and thresholded beta.
Nakajima, Jouchi, and Mike West. "Bayesian analysis of latent threshold dynamic models." Journal of Business & Economic Statistics 31.2 (2013): 151-164.
# Generates 10 series, each one with 500 observations and 2 regressors. d_sim <- ltm_sim( ns = 500, nk = 2, ni = 10, vmu = matrix(c(.5,.5), nrow = 2), mPhi = diag(2) * c(.99, .99), mSigs = c(.1,.1), dsig = .15, vd = matrix(c(.4,.4), nrow = 2), alpha = 0 ) str(d_sim)#> List of 4 #> $ vy : num [1:10, 1:500] -0.5647 0.059 0.0604 0.3678 0.023 ... #> $ mx : num [1:10, 1:500, 1:2] -0.3045 0.3113 0.0901 0.2859 0.3448 ... #> $ mb : num [1:500, 1:2] 0.639 0.69 0.741 0.532 0.566 ... #> $ mb_zerado: num [1:500, 1:2] 0.639 0.69 0.741 0.532 0.566 ...